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INTRODUCTION

Improvements in robust performance of a turret-gun system mounted on helicop-
ters can significantly enhance the mission capabilities of light attack helicopters.
Designing a controller for such a system whose mathematical model is subject to
uncertainties is an interesting and challenging problem. The uncertainties in the model
may arise from unmodeled dynamics, parameter variation, linearization of nonlinear
elements, etc. A significant research effort has been directed toward the design and
implementation of robust controllers which can guarantee the stability and performance.

Among the various methods available for design, the linear quadratic Gaussian
with loop transfer recovery (LOG/LTR) design procedure has many advantages (refs 1
and 2). This methodology will result in systems with excellent robustness, command
following, disturbance rejection and noise suppression properties. The direct applica-
tion of this methodology for designing controllers for turret-gun system yielded a 12/13th
order controller. The convergence/numerical integration problems in the simulation of
this controller along with the nonlinear plant was encountered. Hence we have em-
ployed reduced order models in designing robust controllers using LQG/LTR
methodology.

A large number of procedures are available in the literature for obtaining reduced
order models (ref 3). A suitable reduced order model is identified for designing reduced
order robust controllers. A critical comparison of robustness properties between original
and reduced order controllers is made. The residual modes neglected in the reduced
order procedure may be excited by the controller to cause a destabilizing effect on the
closed loop system response. This phenomenon is called spillover problem which is
not present in this design procedure.

PLANT DESCRIPTION

The turret-gun system consists of an automatic cannon driven by an electrical
motor and mounted within a cradle using a slide mechanism which allows for recoil
movement. Recoil adapters are mounted between the recoiling mass of the gun and
the cradle to absorb some of the recoil force. The cradle and gun assemblies are
attached to a fork using two trunnion pins. One trunnion pin has a resolver built into it.
This resolver provides the elevation pointing error to the turrent control box. The eleva-
tion axis positioning is accomplished through the use of a servovalve controlled, double
acting hydraulic cylinder. The piston has unequal cross-sectional areas to account for
gravitational effects. A delta hydraulic pressure transducer provides rate feedback
information to the turret control box.



The fork assembly is held in place by the azimuth housing that holds a rotary
hydraulic motor and a gearbox. The housing also holds a train rate sensor that meas-
ures the angular velocity of the gun/cradle/fork unit and a resolver for measuring the
angular position.

The azimuth housing, fork, cradle, and gun are attached to the hull of the vehicle.

MODELING OF TURRET-GUN SYSTEM

The mathematical model of the turret-gun system contains nonlinear elements,
such as gear train backlash, servovalve idiosyncrasies, hydraulic motor flows, etc. The
firing disturbances excite the structural modes of the system.

Preliminary testing has shown that very little coupling exists between the elevation
and azimuth axis. Therefore, the nonlinear azimuth and elevation models were devel-
oped independently. Production turret-gun systems are known to have problems mainly
in the azimuth axis; therefore, this report has concentrated more on the azimuth axis.

The azimuth axis system (fig. 1) consists of three physically identifiable sections:
servovalve, hydraulic motor/gearbox, and gun plant. A physical model of this system is
developed by Integrated Systems Inc. (ISI). ISI has developed a detailed nonlinear
model and identified various parameters of the model (ref 4). This model has been
used to design full order and reduced order robust controllers.

DESIGN OF LQG/LTR CONTROLLER

The performance requirements of the controller for azimuth axis are:

* Closed loop stability under parameter variations

* Good command following performance

* Disturbance rejection

* Insensitive to modeling errors

* No spillover problems

* Sensor noise rejection
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The types of uncertainties which affect the response of the system are:

• Barrel temperature

* Firing disturbance excites the structural modes of the gun

* Compliance of the system

e Helicopter motion

• Linearization of nonlinear elements

Full Order Design Results

A linearized 12th-order model of the azimuth system with motor current as input
and train position as output has been derived. A typical feedback system (fig. 2) is
desired to evaluate k(s) using LQG/LTR methodology. After examining the physical
nonlinear model of the azimuth system, it is concluded that most of uncertainties are at
the output of the plant.

By using the standard results (refs 1 and 2) a full order order LQG/LTR controller
has been carried out.

The singular value plots of the target feedback loop and the open loop transfer
function G(s)k(s) are shown in figure 3. The eigenvalues of the loop and closed loop
system are given in table 1.

Table 1. Comparison of open loop and closed loop eigenvalues

Open loop system Closed loop system

-1.7133 x 10 3  -3.396 + j 82.84, -90.519

-5.375 + j 52.04 -16.245 + j 172.8, -16.917 +89.65

-19.819 + j 294.84 -5852.5 +j 1395.4, -63.58 + j 135.74

-20.265 + j 137.94 -4852.2 + j 4543.3, -37.05 + j 302.04

-945.26 -3113 + j 6280.8, -945.33

-122.23 + 6397.9 -1405.3 + j 8136.5, -122.23 + j 6397.9

-1573.2 + 4550.7 -1573.2 + j 4550.7

3



Design Using Reduced Order Models

In order to minimize the computational and implementation requirements of LQG/
LTR controllers, it is desirable to use reduced order models. The examination of open-
loop eigenvalues of the system reveals that the system has seven dominant modes;
therefore, the 7th order reduced models have been derived by using balanced realiza-
tion method (ref 5). These reduced order models are employed to design LQG/LTR
controllers.

The reduced controllers are implemented on the original system as shown in
figure 4.

The singular value plots of the target feedback loop and the open loop transfer
function G(s)kb(s) are shown in figure 5 where Kb(s) is the LQG/LTR controller design

using balanced realization reduced order models.

The eigenvalues of the original open loop system, reduced order model and
closed loop systems with reduced order controllers are given in table 2.

Table 2. Eigenvalue comparisons

Original open Reduced order Closed loop system
loop system model with reduced controller

-1.713 x 10-3  -1.7133 x 10.3  -3.389 +j 82.89

-5.375 + j 52.04 -5.383 + j 52.04 -7.62

-19.819 + j 294.84 -19.996 + j 294.56 -16.55 + j 140.68

-20.265 + j 137.94 -20.733 + j 137.70 -16.90 + j 173.47

-945.26 -63.02 + j 310.19

-122.23 + j 6397.9 -76.-7 + j 57.62

-1573.2 +j 4550.7 -121.92 +j 6397.5

-624.02

-661.84 +j 1121.7

-1571.4 + j 4552.9

4 -15894



The phase and gain margins of the target feedback loop and closed loop system
with original and reduced order controllers are given in table 3.

Table 3. Phase and gain margins

Margins

Gain (dB) PM phase (deg)

Target feedback loop 00 69

Closed loop system with original controller 22 64

Closed loop system with reduced cider controller 13 61

Simulation Results

The parameters of the system matrix are perturbed by 5% and the step responses
for full order design and reduced order design are plotted in figure 6. For the same
perturbation, the ramp responses were plotted in figure 7, and the step response with
random disturbances at the output are given in figure 8.

CONCLUSIONS

Balance reduced order models are employed to design robust controllers using
linear quadratic Gaussian with loop transfer recovery methodology for a practical turret-
gun system. The eigenvalues and stability margins of the reduced order design are
compared with the original controller. These comparisons and simulation results in-
dicate that the reduced order design gave satisfactory results. The spillover problems
are not present in this reduced order controller. The main advantage of the reduced
order design is the simplification in implementation.
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Figure 2. Closed loop system
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Figure 4. Implementation of reduced order controller
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Figure 5. Singular value plots of TFL and Gb(s)ko(S)
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